# Batch Operations Module ```{eval-rst} .. automodule:: mmpp.batch_operations :members: :undoc-members: :show-inheritance: ``` ## Batch Operations Classes ### BatchOperations ```{eval-rst} .. autoclass:: mmpp.batch_operations.BatchOperations :members: :undoc-members: :show-inheritance: :special-members: __init__, __len__, __iter__, __repr__ ``` ### BatchFFT ```{eval-rst} .. autoclass:: mmpp.batch_operations.BatchFFT :members: :undoc-members: :show-inheritance: ``` ### BatchModeAnalyzer ```{eval-rst} .. autoclass:: mmpp.batch_operations.BatchModeAnalyzer :members: :undoc-members: :show-inheritance: ``` ## Usage Examples ### Basic Batch Operations ```python import mmpp as mp # Load simulations op = mp.open("/path/to/simulations") # Get batch operations for all results batch = op[:] # Compute modes for all results summary = batch.fft.modes.compute_modes(dset="m_z5-8") print(f"Computed modes for {summary['successful']} results") ``` ### Parallel Processing ```python # Use parallel processing for faster computation summary = batch.fft.modes.compute_modes( dset="m_z5-8", parallel=True, max_workers=4 ) print(f"Total time: {summary['total_time']:.2f}s") print(f"Average per result: {summary['average_time_per_result']:.2f}s") ``` ### Comprehensive Reports ```python # Generate comprehensive analysis report report = batch.prepare_report( spectrum=True, modes=True, parallel=True ) print(f"Analyzed {report['total_results']} results") ```